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Current Distribution and Mass Transfer in Electrochemical Systems

Jth Newman

Inorganic Materials Research Division, Lawrence Radiation Laboratory, and
Department of “hemical Engineering, University of California, Berkeley

: Fundamental eguations describing transport in dilute electrolytic solutions
~have been known since the turn of the century. In an electrochemical system, many
processes occur simultaneously, and the treatment of such systems involves consi-
deration of the ohmic potential drop, concentration changes near electrodes, and

the kinetics of the heterogeneous electrode reaction.

Application of these principles has followed two main courses. There are sys-
tems where the ohmir potential drop can be neglected. The current distribution is
then determined by the same principles which apply to heat transfer and non-electro-
lytic mass transfer. This usually involves systems operated at the limiting cur-

. rent vith an excess of supporting electrolyte. Iet us call these "convective-
transport problems."

At currents much below the limiting current it is possible to neglect concen-
tration variations near the electrodes. The current distribution is then deter-
mined by the ohmic potential drop in.the solution and by electrode overpotentials.
Mathematically, this means that the poténtial satisfies Laplace's equation, and
many results of potential theory, developed in electrostatics, the flow of inviscid
fluids, and steady heat conduction in solids, are directly applicable. Let us call
these 'potential -theory problems.” The electrode kinetics provide boundary condi-
tions which are usually different from those encountered in other applications of
potential theory.

Problems have been treated which do not fall within either of these two
classes. First, there are "intermediate problems,” where convective transport is
essential but neither concentration variations near the electrode nor the ohmic
potential drop in the solution can be neglected.. These involve currents below,
but at an appreciable fraction of, the limiting current. ‘

Some problems are not so general, but can be regarded as an extension of the
convective-transport problems. At the limiting current the ohmic potential drop
in the bulk of the solution may still be negligible, but the electric field in the
diffusion layer near electrodes may lead to an enhancement of the limiting current.
The current may then be distributed in a similar fashion, but the magnitude is

. changed.

In porous electrodes convection may not be present, but it is usually neces-
sary to consider the ohmic potential drop, concentration variations, and electrode
kinetics. Most treatments adopt a macroscopic model which does not take account
of the detailed, random geometry of the porous structure. Results of potential
theory are then not applicable since.laplace's equation does not hold.

Transport in electrolytic 'solutions. The concentration and potentlal distributions
are to be determ1ned from the equations

Ei'= -ziutiiV¢ - Dchi *ve, . (1)
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The first states that species in the solution can move by migration, diffusion,

and convection. The second is a material balance for a species. The third states
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that the current arises from the motion of charged particles. The fourth is the con-
dition of electroneutrality. These laws provide the basis for the analysis of elec-
trochemical systems. The fluid velocity is to be determined from the laws of fluid
mechanics. .

Electrode kinetics. The differential equations describing the electrolytic solution

require boundary conditions in order for the behavior of an electrochemical system
to be predicted. The most complex of these concerns the kinetics of electrode reac-

‘tions and relates the normal component of the current density at an electrode.to the

surface overpotential. The surface overpotential Ng can be defined as the potential
of the working electrode relative to a reference electrode of the same kind 1ocated
just outside the double layer.

There is no completely general expression describing electrode kinetics. ' How-
ever, it is adequate for our present purpose to assume that the current density de-
pends exponentially on the surface overpotential in the following form:

i= io [exp -0 n }-- exp {- il%%iﬂz ﬂs}1 . ' (5)

Convective-transport problems. For the reaction of minor ionic species in a solu-

tion containing excess supporting electrolyte, it should be permissible to neglect

the contribution of ionic migration to the flux of the reacting ions, so that equa-
tion (1) becomes

H’i = -D.chi + Xci R (6)

and substitution into equation (2) yields

dc,
Wl + X_.vci = D],.V2ci . ) (1)

This may be called the equation of convective diffusion. A similar equation applies
to convective heat transfer and convective mass transfer in non-electrolytic solu-
tions. Since these fields have been studied in detail, it is possible to apply many
results to electrochemical systems which obey equation (7)

The systems typically studied in heat and mass transfer involve laminar and
turbulent flow with various geometric arrangements. The flow may be due to some more
or less well characterized stirring (forced convection) or may be the result of den-
sity d1§ferences created in the solution as part of the transfer process (free con-
vection}.

Essential to the understanding of convective-transport problems is the concept
of the diffusion layer. - Frequently, due to the small valuc of the diffusion coeffi-
cient, the concentrations differ significantly from their bulk values only in a thin
region near the surface of an electrode. 1In this region the velocity is small, and
diffusion is important to the transport process. The thinness of this region permits
a simplification in the analysis, but it 1s erroneous to treat the diffusion layer
as. a stagnant region. TFigure 1 shows the concentration profile -in the diffusion
layer, with the electrode surface at the left. Far from the surface convective

transport dominates, while at the surface itself there is only diffusion.

To illustrate the current distribution obtained in this type of problem, con-
sider two plane electrodes of length L and separated by a distance h and which form
parts of the walls of a flow channel with otherwise insulating walls. For laminar
flow from left to'right, with an average velocity <v>, -the limiting current density

has the distribution; as illustrated in figure 2,
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wvhere x is the digstance along the electrode. The mass~transfer rate is infinite at
the upstream edge of the electrode where fresh solution is brought in contact with
the electrode. The current decreases with increasing x since the solution in the
diffusion layer has already been depleted by the electrode reaction further upstream.
later it will be instructive to compare this current distribution with that which
would be obtained when the ohmic potential drop in the solution is controlling.

Other convective-transport problems which have been treated include flow in a
pipe and in annular conduits, a flat plate in a free stream, rotating cylinders,
growing mercury drops, rotating disks, and free convection at vertical and horizon-
tal plates and outside spheres and cylinders.

Applications of potential theory. When concentration gradients in the solution .can
be igmored, equations (3), (1), and (L) yield

i= -0 (9)

vhere ) :
_2;“2 :
| , k=F 2, A%NC (10)

is the conductivity of the solution. Egqguation (2) when multiplied by z1 and summed
over i yields

Ye-0, - (11)

that is, the potential satisfies Laplace's equation.

The boundary conditions are determined with equation (9). On insulators
/3y =0, : (12)

where y is the normal distance from the surface. On electrodes, equation (9) re-
lates this potential derivative to the surface overpotential through equation (5).
If the potential ¢ in the solution is measured with a reference electrode of the
same kind as the working electrode, then the surface overpotential can be eliminated
with the relation .

=V-0, (13)

s

where V is the potential of the metal electrode. The resulting boundary condition
is a nonlinear relationship between the potential and the potential derivative and
is not commonly encountered in other applications of potential theory.

In so-called primary-current-distribution problems the surface overpotential is
neglected altogether, and the solution adjacent to the electrode is taken to be an
equipotential surface. The resulting current distribution for the plane electrodes
in the flow channel considered earlier is shown in figure 2 for L = 2h. The distri-
bution is symmetric since convection is not important. The current density is
infinite at the endes of the electrodes since the current can flow through the solu-
tion beyond the ends of the electrodes. This is a general characteristic of primary
current distributions. The current density where an -electrode meets an insulator
is either infinite or zero unless they form a right angle.

The so-called secondary current distribution takes into account the surface
overpotential, although the boundary condition is frequently replaced by & linear or
a logarithmic (Tafel) relation between the potemtial and the potential derivative.

The general effect of electrode polarization is to make the secondary current distri-
bution more nearly uniform than the primary current distribution, and an infinite cur-
rent density at the edge of electrodes is eliminated.
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Intermediate problems. The current distribution on a rotating disk electrode’ and
free convection on two vertical electrodes at either end of a rectangular tank® have
been treated with account taken of concentration variations, ohmic potential drop,
and surface overpotential. The results are, as one might expect, intermediate be-
tween the two extreme cases. The formulation of the problem so as to take advantage
of the thinnegs of the diffusion lsyer has also been discussed.>

?

Effect of migration gg 1imiting currents. At the limiting current,| the current den-
-sity-is distributed along the electrode in the same manner as when migration is neg-

lected, but the magnitude of the current density at all points is increased or dim-

‘inished by a constant factor which depends upon the bulk composition of the solution.

This effect has been treated® 4 for the rotating disk, the growing mercury drop,
penetration into a semi-infinite medium, the stagnant Nernst diffusion layer, and
arbitrary two-dimensional and axisymmetric diffusion layers.

John Newman. "Current Distribution on a Rotating Disk below the Limiting Current.”
Journal of the Electrochemical Society, 113, 1235-1241 (1966).

2 Kameo Asada, Fumio Hine, Shiro Yoshizawa, and Shinzo Okada. "Mass Transfer and
Current Distribution under Free Convection Conditions." Journal of the Electro-
_ chemical Society, 107, 242-246 (1960). ’ :
> John Newman. The Effect of Migrat1on in laminar Boundary layers. UCRL~16665-Rev.
December, 1966.

John Newman. "Effect of Tonic Migration on Limiting Currents.' 'Industrial and
En g;neering Chemistry Fundamentals, 5, 525-529 (1966 ). .




5k

ol

80 90 0 20

ye =1
dosp 2twyo

Ag pajiwid

uoisnyy1p
puD UOI}23AUOD

Ag pajpunT

—190

—48'0

L ‘/ - ~
*sapoaqoaTe xreueTd uo
uoLnGlIFSIp Waddn]y T aInd1yg
—-- *T aandig
u .
~
a
<
N ?
0¢ 91 4l 8°0 0
T T T T T 1 ! I
B 13AD] uoIsnyip Ul

a)1j01d uO01}DI}UBIUOD

20

0

90

80



